Step 1 :
Rewrite $ a^{8}-1 $ as:
$$ a^{8}-1 = (a^{4})^2 - (1)^2 $$Now we can apply the difference of squares formula.
$$ I^2 - II^2 = (I - II)(I + II) $$After putting $ I = a^{4} $ and $ II = 1 $ , we have:
$$ a^{8}-1 = (a^{4})^2 - (1)^2 = ( a^{4}-1 ) ( a^{4}+1 ) $$Step 2 :
Rewrite $ a^{4}-1 $ as:
$$ a^{4}-1 = (a^{2})^2 - (1)^2 $$Now we can apply the difference of squares formula.
$$ I^2 - II^2 = (I - II)(I + II) $$After putting $ I = a^{2} $ and $ II = 1 $ , we have:
$$ a^{4}-1 = (a^{2})^2 - (1)^2 = ( a^{2}-1 ) ( a^{2}+1 ) $$Step 3 :
Rewrite $ a^{2}-1 $ as:
$$ a^{2}-1 = (a)^2 - (1)^2 $$Now we can apply the difference of squares formula.
$$ I^2 - II^2 = (I - II)(I + II) $$After putting $ I = a $ and $ II = 1 $ , we have:
$$ a^{2}-1 = (a)^2 - (1)^2 = ( a-1 ) ( a+1 ) $$