Step 1 :
After factoring out $ a $ we have:
$$ a^{3}-a = a ( a^{2}-1 ) $$Step 2 :
Rewrite $ a^{2}-1 $ as:
$$ a^{2}-1 = (a)^2 - (1)^2 $$Now we can apply the difference of squares formula.
$$ I^2 - II^2 = (I - II)(I + II) $$After putting $ I = a $ and $ II = 1 $ , we have:
$$ a^{2}-1 = (a)^2 - (1)^2 = ( a-1 ) ( a+1 ) $$