Step 1 :
After factoring out $ 9 $ we have:
$$ 9x^{2}+90x-99 = 9 ( x^{2}+10x-11 ) $$Step 2 :
Step 2: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = 10 } ~ \text{ and } ~ \color{red}{ c = -11 }$$Now we must discover two numbers that sum up to $ \color{blue}{ 10 } $ and multiply to $ \color{red}{ -11 } $.
Step 3: Find out pairs of numbers with a product of $\color{red}{ c = -11 }$.
PRODUCT = -11 | |
-1 11 | 1 -11 |
Step 4: Find out which pair sums up to $\color{blue}{ b = 10 }$
PRODUCT = -11 and SUM = 10 | |
-1 11 | 1 -11 |
Step 5: Put -1 and 11 into placeholders to get factored form.
$$ \begin{aligned} x^{2}+10x-11 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ x^{2}+10x-11 & = (x -1)(x + 11) \end{aligned} $$