It seems that $ 11x^{2}-x-4 $ cannot be factored out.
Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 11 }$ by the constant term $\color{blue}{c = -4} $.
$$ a \cdot c = -44 $$Step 3: Find out two numbers that multiply to $ a \cdot c = -44 $ and add to $ b = -1 $.
Step 4: All pairs of numbers with a product of $ -44 $ are:
PRODUCT = -44 | |
-1 44 | 1 -44 |
-2 22 | 2 -22 |
-4 11 | 4 -11 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = -1 }$
Step 6: Because none of these pairs will give us a sum of $ \color{blue}{ -1 }$, we conclude the polynomial cannot be factored.