Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 9 }$ by the constant term $\color{blue}{c = -4} $.
$$ a \cdot c = -36 $$Step 3: Find out two numbers that multiply to $ a \cdot c = -36 $ and add to $ b = 5 $.
Step 4: All pairs of numbers with a product of $ -36 $ are:
PRODUCT = -36 | |
-1 36 | 1 -36 |
-2 18 | 2 -18 |
-3 12 | 3 -12 |
-4 9 | 4 -9 |
-6 6 | 6 -6 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = 5 }$
PRODUCT = -36 and SUM = 5 | |
-1 36 | 1 -36 |
-2 18 | 2 -18 |
-3 12 | 3 -12 |
-4 9 | 4 -9 |
-6 6 | 6 -6 |
Step 6: Replace middle term $ 5 x $ with $ 9x-4x $:
$$ 9x^{2}+5x-4 = 9x^{2}+9x-4x-4 $$Step 7: Apply factoring by grouping. Factor $ 9x $ out of the first two terms and $ -4 $ out of the last two terms.
$$ 9x^{2}+9x-4x-4 = 9x\left(x+1\right) -4\left(x+1\right) = \left(9x-4\right) \left(x+1\right) $$