Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 9 }$ by the constant term $\color{blue}{c = -32} $.
$$ a \cdot c = -288 $$Step 3: Find out two numbers that multiply to $ a \cdot c = -288 $ and add to $ b = -2 $.
Step 4: All pairs of numbers with a product of $ -288 $ are:
PRODUCT = -288 | |
-1 288 | 1 -288 |
-2 144 | 2 -144 |
-3 96 | 3 -96 |
-4 72 | 4 -72 |
-6 48 | 6 -48 |
-8 36 | 8 -36 |
-9 32 | 9 -32 |
-12 24 | 12 -24 |
-16 18 | 16 -18 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = -2 }$
PRODUCT = -288 and SUM = -2 | |
-1 288 | 1 -288 |
-2 144 | 2 -144 |
-3 96 | 3 -96 |
-4 72 | 4 -72 |
-6 48 | 6 -48 |
-8 36 | 8 -36 |
-9 32 | 9 -32 |
-12 24 | 12 -24 |
-16 18 | 16 -18 |
Step 6: Replace middle term $ -2 x $ with $ 16x-18x $:
$$ 9x^{2}-2x-32 = 9x^{2}+16x-18x-32 $$Step 7: Apply factoring by grouping. Factor $ x $ out of the first two terms and $ -2 $ out of the last two terms.
$$ 9x^{2}+16x-18x-32 = x\left(9x+16\right) -2\left(9x+16\right) = \left(x-2\right) \left(9x+16\right) $$