Step 1 :
Factor out common factor $ \color{blue}{ 2 } $:
$$ 98x^2+56xy+8y^2 = 2 ( 49x^2+28xy+4y^2 ) $$Step 2 :
Note that the polynomial $ 49x^2+28xy+4y^2 $ is a perfect square trinomial, so we will use the following formula.
$$ A^2 + 2AB + B^2 = (A + B)^2 $$In this example we have $ \color{blue}{ A = 7x } $ and $ \color{red}{ B = 2y } $ so,
$$ 49x^2+28xy+4y^2 = ( \color{blue}{ 7x } + \color{red}{ 2y } )^2 $$