Step 1 :
After factoring out $ 2 $ we have:
$$ 96x^{2}+82x+12 = 2 ( 48x^{2}+41x+6 ) $$Step 2 :
Step 2: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 3: Multiply the leading coefficient $\color{blue}{ a = 48 }$ by the constant term $\color{blue}{c = 6} $.
$$ a \cdot c = 288 $$Step 4: Find out two numbers that multiply to $ a \cdot c = 288 $ and add to $ b = 41 $.
Step 5: All pairs of numbers with a product of $ 288 $ are:
PRODUCT = 288 | |
1 288 | -1 -288 |
2 144 | -2 -144 |
3 96 | -3 -96 |
4 72 | -4 -72 |
6 48 | -6 -48 |
8 36 | -8 -36 |
9 32 | -9 -32 |
12 24 | -12 -24 |
16 18 | -16 -18 |
Step 6: Find out which factor pair sums up to $\color{blue}{ b = 41 }$
PRODUCT = 288 and SUM = 41 | |
1 288 | -1 -288 |
2 144 | -2 -144 |
3 96 | -3 -96 |
4 72 | -4 -72 |
6 48 | -6 -48 |
8 36 | -8 -36 |
9 32 | -9 -32 |
12 24 | -12 -24 |
16 18 | -16 -18 |
Step 7: Replace middle term $ 41 x $ with $ 32x+9x $:
$$ 48x^{2}+41x+6 = 48x^{2}+32x+9x+6 $$Step 8: Apply factoring by grouping. Factor $ 16x $ out of the first two terms and $ 3 $ out of the last two terms.
$$ 48x^{2}+32x+9x+6 = 16x\left(3x+2\right) + 3\left(3x+2\right) = \left(16x+3\right) \left(3x+2\right) $$