Step 1 :
After factoring out $ 6 $ we have:
$$ 90y^{2}+84y-48 = 6 ( 15y^{2}+14y-8 ) $$Step 2 :
Step 2: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 3: Multiply the leading coefficient $\color{blue}{ a = 15 }$ by the constant term $\color{blue}{c = -8} $.
$$ a \cdot c = -120 $$Step 4: Find out two numbers that multiply to $ a \cdot c = -120 $ and add to $ b = 14 $.
Step 5: All pairs of numbers with a product of $ -120 $ are:
PRODUCT = -120 | |
-1 120 | 1 -120 |
-2 60 | 2 -60 |
-3 40 | 3 -40 |
-4 30 | 4 -30 |
-5 24 | 5 -24 |
-6 20 | 6 -20 |
-8 15 | 8 -15 |
-10 12 | 10 -12 |
Step 6: Find out which factor pair sums up to $\color{blue}{ b = 14 }$
PRODUCT = -120 and SUM = 14 | |
-1 120 | 1 -120 |
-2 60 | 2 -60 |
-3 40 | 3 -40 |
-4 30 | 4 -30 |
-5 24 | 5 -24 |
-6 20 | 6 -20 |
-8 15 | 8 -15 |
-10 12 | 10 -12 |
Step 7: Replace middle term $ 14 x $ with $ 20x-6x $:
$$ 15x^{2}+14x-8 = 15x^{2}+20x-6x-8 $$Step 8: Apply factoring by grouping. Factor $ 5x $ out of the first two terms and $ -2 $ out of the last two terms.
$$ 15x^{2}+20x-6x-8 = 5x\left(3x+4\right) -2\left(3x+4\right) = \left(5x-2\right) \left(3x+4\right) $$