Step 1 :
After factoring out $ -x $ we have:
$$ -x^{3}+x^{2}+90x = -x ( x^{2}-x-90 ) $$Step 2 :
Step 2: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = -1 } ~ \text{ and } ~ \color{red}{ c = -90 }$$Now we must discover two numbers that sum up to $ \color{blue}{ -1 } $ and multiply to $ \color{red}{ -90 } $.
Step 3: Find out pairs of numbers with a product of $\color{red}{ c = -90 }$.
PRODUCT = -90 | |
-1 90 | 1 -90 |
-2 45 | 2 -45 |
-3 30 | 3 -30 |
-5 18 | 5 -18 |
-6 15 | 6 -15 |
-9 10 | 9 -10 |
Step 4: Find out which pair sums up to $\color{blue}{ b = -1 }$
PRODUCT = -90 and SUM = -1 | |
-1 90 | 1 -90 |
-2 45 | 2 -45 |
-3 30 | 3 -30 |
-5 18 | 5 -18 |
-6 15 | 6 -15 |
-9 10 | 9 -10 |
Step 5: Put 9 and -10 into placeholders to get factored form.
$$ \begin{aligned} x^{2}-x-90 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ x^{2}-x-90 & = (x + 9)(x -10) \end{aligned} $$