Step 1 :
To factor $ 8x^{3}-729 $ we can use difference of cubes formula:
$$ I^3 - II^3 = (I - II)(I^2 + I \cdot II + II^2) $$After putting $ I = 2x $ and $ II = 9 $ , we have:
$$ 8x^{3}-729 = ( 2x-9 ) ( 4x^{2}+18x+81 ) $$Step 2 :
Step 2: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 3: Multiply the leading coefficient $\color{blue}{ a = 4 }$ by the constant term $\color{blue}{c = 81} $.
$$ a \cdot c = 324 $$Step 4: Find out two numbers that multiply to $ a \cdot c = 324 $ and add to $ b = 18 $.
Step 5: All pairs of numbers with a product of $ 324 $ are:
PRODUCT = 324 | |
1 324 | -1 -324 |
2 162 | -2 -162 |
3 108 | -3 -108 |
4 81 | -4 -81 |
6 54 | -6 -54 |
9 36 | -9 -36 |
12 27 | -12 -27 |
18 18 | -18 -18 |
Step 6: Find out which factor pair sums up to $\color{blue}{ b = 18 }$
Step 7: Because none of these pairs will give us a sum of $ \color{blue}{ 18 }$, we conclude the polynomial cannot be factored.