Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 8 }$ by the constant term $\color{blue}{c = 56} $.
$$ a \cdot c = 448 $$Step 3: Find out two numbers that multiply to $ a \cdot c = 448 $ and add to $ b = 71 $.
Step 4: All pairs of numbers with a product of $ 448 $ are:
PRODUCT = 448 | |
1 448 | -1 -448 |
2 224 | -2 -224 |
4 112 | -4 -112 |
7 64 | -7 -64 |
8 56 | -8 -56 |
14 32 | -14 -32 |
16 28 | -16 -28 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = 71 }$
PRODUCT = 448 and SUM = 71 | |
1 448 | -1 -448 |
2 224 | -2 -224 |
4 112 | -4 -112 |
7 64 | -7 -64 |
8 56 | -8 -56 |
14 32 | -14 -32 |
16 28 | -16 -28 |
Step 6: Replace middle term $ 71 x $ with $ 64x+7x $:
$$ 8x^{2}+71x+56 = 8x^{2}+64x+7x+56 $$Step 7: Apply factoring by grouping. Factor $ 8x $ out of the first two terms and $ 7 $ out of the last two terms.
$$ 8x^{2}+64x+7x+56 = 8x\left(x+8\right) + 7\left(x+8\right) = \left(8x+7\right) \left(x+8\right) $$