Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 8 }$ by the constant term $\color{blue}{c = 45} $.
$$ a \cdot c = 360 $$Step 3: Find out two numbers that multiply to $ a \cdot c = 360 $ and add to $ b = -77 $.
Step 4: All pairs of numbers with a product of $ 360 $ are:
PRODUCT = 360 | |
1 360 | -1 -360 |
2 180 | -2 -180 |
3 120 | -3 -120 |
4 90 | -4 -90 |
5 72 | -5 -72 |
6 60 | -6 -60 |
8 45 | -8 -45 |
9 40 | -9 -40 |
10 36 | -10 -36 |
12 30 | -12 -30 |
15 24 | -15 -24 |
18 20 | -18 -20 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = -77 }$
PRODUCT = 360 and SUM = -77 | |
1 360 | -1 -360 |
2 180 | -2 -180 |
3 120 | -3 -120 |
4 90 | -4 -90 |
5 72 | -5 -72 |
6 60 | -6 -60 |
8 45 | -8 -45 |
9 40 | -9 -40 |
10 36 | -10 -36 |
12 30 | -12 -30 |
15 24 | -15 -24 |
18 20 | -18 -20 |
Step 6: Replace middle term $ -77 x $ with $ -5x-72x $:
$$ 8x^{2}-77x+45 = 8x^{2}-5x-72x+45 $$Step 7: Apply factoring by grouping. Factor $ x $ out of the first two terms and $ -9 $ out of the last two terms.
$$ 8x^{2}-5x-72x+45 = x\left(8x-5\right) -9\left(8x-5\right) = \left(x-9\right) \left(8x-5\right) $$