Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 8 }$ by the constant term $\color{blue}{c = 90} $.
$$ a \cdot c = 720 $$Step 3: Find out two numbers that multiply to $ a \cdot c = 720 $ and add to $ b = 89 $.
Step 4: All pairs of numbers with a product of $ 720 $ are:
PRODUCT = 720 | |
1 720 | -1 -720 |
2 360 | -2 -360 |
3 240 | -3 -240 |
4 180 | -4 -180 |
5 144 | -5 -144 |
6 120 | -6 -120 |
8 90 | -8 -90 |
9 80 | -9 -80 |
10 72 | -10 -72 |
12 60 | -12 -60 |
15 48 | -15 -48 |
16 45 | -16 -45 |
18 40 | -18 -40 |
20 36 | -20 -36 |
24 30 | -24 -30 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = 89 }$
PRODUCT = 720 and SUM = 89 | |
1 720 | -1 -720 |
2 360 | -2 -360 |
3 240 | -3 -240 |
4 180 | -4 -180 |
5 144 | -5 -144 |
6 120 | -6 -120 |
8 90 | -8 -90 |
9 80 | -9 -80 |
10 72 | -10 -72 |
12 60 | -12 -60 |
15 48 | -15 -48 |
16 45 | -16 -45 |
18 40 | -18 -40 |
20 36 | -20 -36 |
24 30 | -24 -30 |
Step 6: Replace middle term $ 89 x $ with $ 80x+9x $:
$$ 8x^{2}+89x+90 = 8x^{2}+80x+9x+90 $$Step 7: Apply factoring by grouping. Factor $ 8x $ out of the first two terms and $ 9 $ out of the last two terms.
$$ 8x^{2}+80x+9x+90 = 8x\left(x+10\right) + 9\left(x+10\right) = \left(8x+9\right) \left(x+10\right) $$