Step 1 :
After factoring out $ 8 $ we have:
$$ 8c^{2}-40c+32 = 8 ( c^{2}-5c+4 ) $$Step 2 :
Step 2: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = -5 } ~ \text{ and } ~ \color{red}{ c = 4 }$$Now we must discover two numbers that sum up to $ \color{blue}{ -5 } $ and multiply to $ \color{red}{ 4 } $.
Step 3: Find out pairs of numbers with a product of $\color{red}{ c = 4 }$.
PRODUCT = 4 | |
1 4 | -1 -4 |
2 2 | -2 -2 |
Step 4: Find out which pair sums up to $\color{blue}{ b = -5 }$
PRODUCT = 4 and SUM = -5 | |
1 4 | -1 -4 |
2 2 | -2 -2 |
Step 5: Put -1 and -4 into placeholders to get factored form.
$$ \begin{aligned} c^{2}-5c+4 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ c^{2}-5c+4 & = (x -1)(x -4) \end{aligned} $$