Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 7 }$ by the constant term $\color{blue}{c = 40} $.
$$ a \cdot c = 280 $$Step 3: Find out two numbers that multiply to $ a \cdot c = 280 $ and add to $ b = 38 $.
Step 4: All pairs of numbers with a product of $ 280 $ are:
PRODUCT = 280 | |
1 280 | -1 -280 |
2 140 | -2 -140 |
4 70 | -4 -70 |
5 56 | -5 -56 |
7 40 | -7 -40 |
8 35 | -8 -35 |
10 28 | -10 -28 |
14 20 | -14 -20 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = 38 }$
PRODUCT = 280 and SUM = 38 | |
1 280 | -1 -280 |
2 140 | -2 -140 |
4 70 | -4 -70 |
5 56 | -5 -56 |
7 40 | -7 -40 |
8 35 | -8 -35 |
10 28 | -10 -28 |
14 20 | -14 -20 |
Step 6: Replace middle term $ 38 x $ with $ 28x+10x $:
$$ 7x^{2}+38x+40 = 7x^{2}+28x+10x+40 $$Step 7: Apply factoring by grouping. Factor $ 7x $ out of the first two terms and $ 10 $ out of the last two terms.
$$ 7x^{2}+28x+10x+40 = 7x\left(x+4\right) + 10\left(x+4\right) = \left(7x+10\right) \left(x+4\right) $$