Step 1 :
After factoring out $ 6 $ we have:
$$ 6y^{2}+24y-36 = 6 ( y^{2}+4y-6 ) $$Step 2 :
Step 2: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = 4 } ~ \text{ and } ~ \color{red}{ c = -6 }$$Now we must discover two numbers that sum up to $ \color{blue}{ 4 } $ and multiply to $ \color{red}{ -6 } $.
Step 3: Find out pairs of numbers with a product of $\color{red}{ c = -6 }$.
PRODUCT = -6 | |
-1 6 | 1 -6 |
-2 3 | 2 -3 |
Step 4: Because none of these pairs will give us a sum of $ \color{blue}{ 4 }$, we conclude the polynomial cannot be factored.