It seems that $ 6x^{2}-x+759375 $ cannot be factored out.
Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 6 }$ by the constant term $\color{blue}{c = 759375} $.
$$ a \cdot c = 4556250 $$Step 3: Find out two numbers that multiply to $ a \cdot c = 4556250 $ and add to $ b = -1 $.
Step 4: All pairs of numbers with a product of $ 4556250 $ are:
PRODUCT = 4556250 | |
1 4556250 | -1 -4556250 |
2 2278125 | -2 -2278125 |
3 1518750 | -3 -1518750 |
5 911250 | -5 -911250 |
6 759375 | -6 -759375 |
9 506250 | -9 -506250 |
10 455625 | -10 -455625 |
15 303750 | -15 -303750 |
18 253125 | -18 -253125 |
25 182250 | -25 -182250 |
27 168750 | -27 -168750 |
30 151875 | -30 -151875 |
45 101250 | -45 -101250 |
50 91125 | -50 -91125 |
54 84375 | -54 -84375 |
75 60750 | -75 -60750 |
81 56250 | -81 -56250 |
90 50625 | -90 -50625 |
125 36450 | -125 -36450 |
135 33750 | -135 -33750 |
150 30375 | -150 -30375 |
162 28125 | -162 -28125 |
225 20250 | -225 -20250 |
243 18750 | -243 -18750 |
250 18225 | -250 -18225 |
270 16875 | -270 -16875 |
375 12150 | -375 -12150 |
405 11250 | -405 -11250 |
450 10125 | -450 -10125 |
486 9375 | -486 -9375 |
625 7290 | -625 -7290 |
675 6750 | -675 -6750 |
729 6250 | -729 -6250 |
750 6075 | -750 -6075 |
810 5625 | -810 -5625 |
1125 4050 | -1125 -4050 |
1215 3750 | -1215 -3750 |
1250 3645 | -1250 -3645 |
1350 3375 | -1350 -3375 |
1458 3125 | -1458 -3125 |
1875 2430 | -1875 -2430 |
2025 2250 | -2025 -2250 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = -1 }$
Step 6: Because none of these pairs will give us a sum of $ \color{blue}{ -1 }$, we conclude the polynomial cannot be factored.