Step 1 :
After factoring out $ 6 $ we have:
$$ 6x^{2}-78x+216 = 6 ( x^{2}-13x+36 ) $$Step 2 :
Step 2: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = -13 } ~ \text{ and } ~ \color{red}{ c = 36 }$$Now we must discover two numbers that sum up to $ \color{blue}{ -13 } $ and multiply to $ \color{red}{ 36 } $.
Step 3: Find out pairs of numbers with a product of $\color{red}{ c = 36 }$.
PRODUCT = 36 | |
1 36 | -1 -36 |
2 18 | -2 -18 |
3 12 | -3 -12 |
4 9 | -4 -9 |
6 6 | -6 -6 |
Step 4: Find out which pair sums up to $\color{blue}{ b = -13 }$
PRODUCT = 36 and SUM = -13 | |
1 36 | -1 -36 |
2 18 | -2 -18 |
3 12 | -3 -12 |
4 9 | -4 -9 |
6 6 | -6 -6 |
Step 5: Put -4 and -9 into placeholders to get factored form.
$$ \begin{aligned} x^{2}-13x+36 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ x^{2}-13x+36 & = (x -4)(x -9) \end{aligned} $$