Step 1 :
After factoring out $ 6 $ we have:
$$ 6b^{2}+66b+60 = 6 ( b^{2}+11b+10 ) $$Step 2 :
Step 2: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = 11 } ~ \text{ and } ~ \color{red}{ c = 10 }$$Now we must discover two numbers that sum up to $ \color{blue}{ 11 } $ and multiply to $ \color{red}{ 10 } $.
Step 3: Find out pairs of numbers with a product of $\color{red}{ c = 10 }$.
PRODUCT = 10 | |
1 10 | -1 -10 |
2 5 | -2 -5 |
Step 4: Find out which pair sums up to $\color{blue}{ b = 11 }$
PRODUCT = 10 and SUM = 11 | |
1 10 | -1 -10 |
2 5 | -2 -5 |
Step 5: Put 1 and 10 into placeholders to get factored form.
$$ \begin{aligned} b^{2}+11b+10 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ b^{2}+11b+10 & = (x + 1)(x + 10) \end{aligned} $$