Step 1 :
Factor out common factor $ \color{blue}{ 6a } $:
$$ 6a^3-24ab^2 = 6a ( a^2-4b^2 ) $$Step 2 :
Rewrite $ a^2-4b^2 $ as:
$$ \color{blue}{ a^2-4b^2 = (a)^2 - (2b)^2 } $$Now we can apply the difference of squares formula.
$$ I^2 - II^2 = (I - II)(I + II) $$After putting $ I = a $ and $ II = 2b $ , we have:
$$ a^2-4b^2 = (a)^2 - (2b)^2 = ( a-2b ) ( a+2b ) $$