Step 1 :
Rewrite $ 64v^6-y^6 $ as:
$$ \color{blue}{ 64v^6-y^6 = (8v^3)^2 - (y^3)^2 } $$Now we can apply the difference of squares formula.
$$ I^2 - II^2 = (I - II)(I + II) $$After putting $ I = 8v^3 $ and $ II = y^3 $ , we have:
$$ 64v^6-y^6 = (8v^3)^2 - (y^3)^2 = ( 8v^3-y^3 ) ( 8v^3+y^3 ) $$Step 2 :
To factor $ 8v^{3}+y^{3} $ we can use sum of cubes formula:
$$ I^3 + II^3 = (I + II) (I^2 - I \cdot II + II^2)$$After putting $ I = 2v $ and $ II = y $ , we have:
$$ 8v^{3}+y^{3} = ( 2v+y ) ( 4v^{2}-2vy+y^{2} ) $$Step 3 :
To factor $ 8v^{3}-y^{3} $ we can use difference of cubes formula:
$$ I^3 - II^3 = (I - II) (I^2 + I \cdot II + II^2) $$After putting $ I = 2v $ and $ II = y $ , we have:
$$ 8v^{3}-y^{3} = ( 2v-y ) ( 4v^{2}+2vy+y^{2} ) $$