Step 1 :
After factoring out $ 3a $ we have:
$$ 1029a^{4}+648a = 3a ( 343a^{3}+216 ) $$Step 2 :
To factor $ 343a^{3}+216 $ we can use sum of cubes formula:
$$ I^3 - II^3 = (I + II)(I^2 - I \cdot II + II^2) $$After putting $ I = 7a $ and $ II = 6 $ , we have:
$$ 343a^{3}+216 = ( 7a+6 ) ( 49a^{2}-42a+36 ) $$Step 3 :
Step 3: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 4: Multiply the leading coefficient $\color{blue}{ a = 49 }$ by the constant term $\color{blue}{c = 36} $.
$$ a \cdot c = 1764 $$Step 5: Find out two numbers that multiply to $ a \cdot c = 1764 $ and add to $ b = -42 $.
Step 6: All pairs of numbers with a product of $ 1764 $ are:
PRODUCT = 1764 | |
1 1764 | -1 -1764 |
2 882 | -2 -882 |
3 588 | -3 -588 |
4 441 | -4 -441 |
6 294 | -6 -294 |
7 252 | -7 -252 |
9 196 | -9 -196 |
12 147 | -12 -147 |
14 126 | -14 -126 |
18 98 | -18 -98 |
21 84 | -21 -84 |
28 63 | -28 -63 |
36 49 | -36 -49 |
42 42 | -42 -42 |
Step 7: Find out which factor pair sums up to $\color{blue}{ b = -42 }$
Step 8: Because none of these pairs will give us a sum of $ \color{blue}{ -42 }$, we conclude the polynomial cannot be factored.