Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 5 }$ by the constant term $\color{blue}{c = 54} $.
$$ a \cdot c = 270 $$Step 3: Find out two numbers that multiply to $ a \cdot c = 270 $ and add to $ b = 51 $.
Step 4: All pairs of numbers with a product of $ 270 $ are:
PRODUCT = 270 | |
1 270 | -1 -270 |
2 135 | -2 -135 |
3 90 | -3 -90 |
5 54 | -5 -54 |
6 45 | -6 -45 |
9 30 | -9 -30 |
10 27 | -10 -27 |
15 18 | -15 -18 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = 51 }$
PRODUCT = 270 and SUM = 51 | |
1 270 | -1 -270 |
2 135 | -2 -135 |
3 90 | -3 -90 |
5 54 | -5 -54 |
6 45 | -6 -45 |
9 30 | -9 -30 |
10 27 | -10 -27 |
15 18 | -15 -18 |
Step 6: Replace middle term $ 51 x $ with $ 45x+6x $:
$$ 5x^{2}+51x+54 = 5x^{2}+45x+6x+54 $$Step 7: Apply factoring by grouping. Factor $ 5x $ out of the first two terms and $ 6 $ out of the last two terms.
$$ 5x^{2}+45x+6x+54 = 5x\left(x+9\right) + 6\left(x+9\right) = \left(5x+6\right) \left(x+9\right) $$