Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 5 }$ by the constant term $\color{blue}{c = 81} $.
$$ a \cdot c = 405 $$Step 3: Find out two numbers that multiply to $ a \cdot c = 405 $ and add to $ b = -54 $.
Step 4: All pairs of numbers with a product of $ 405 $ are:
PRODUCT = 405 | |
1 405 | -1 -405 |
3 135 | -3 -135 |
5 81 | -5 -81 |
9 45 | -9 -45 |
15 27 | -15 -27 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = -54 }$
PRODUCT = 405 and SUM = -54 | |
1 405 | -1 -405 |
3 135 | -3 -135 |
5 81 | -5 -81 |
9 45 | -9 -45 |
15 27 | -15 -27 |
Step 6: Replace middle term $ -54 x $ with $ -9x-45x $:
$$ 5x^{2}-54x+81 = 5x^{2}-9x-45x+81 $$Step 7: Apply factoring by grouping. Factor $ x $ out of the first two terms and $ -9 $ out of the last two terms.
$$ 5x^{2}-9x-45x+81 = x\left(5x-9\right) -9\left(5x-9\right) = \left(x-9\right) \left(5x-9\right) $$