Step 1 :
After factoring out $ 6 $ we have:
$$ 54n^{2}+126n-48 = 6 ( 9n^{2}+21n-8 ) $$Step 2 :
Step 2: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 3: Multiply the leading coefficient $\color{blue}{ a = 9 }$ by the constant term $\color{blue}{c = -8} $.
$$ a \cdot c = -72 $$Step 4: Find out two numbers that multiply to $ a \cdot c = -72 $ and add to $ b = 21 $.
Step 5: All pairs of numbers with a product of $ -72 $ are:
PRODUCT = -72 | |
-1 72 | 1 -72 |
-2 36 | 2 -36 |
-3 24 | 3 -24 |
-4 18 | 4 -18 |
-6 12 | 6 -12 |
-8 9 | 8 -9 |
Step 6: Find out which factor pair sums up to $\color{blue}{ b = 21 }$
PRODUCT = -72 and SUM = 21 | |
-1 72 | 1 -72 |
-2 36 | 2 -36 |
-3 24 | 3 -24 |
-4 18 | 4 -18 |
-6 12 | 6 -12 |
-8 9 | 8 -9 |
Step 7: Replace middle term $ 21 x $ with $ 24x-3x $:
$$ 9x^{2}+21x-8 = 9x^{2}+24x-3x-8 $$Step 8: Apply factoring by grouping. Factor $ 3x $ out of the first two terms and $ -1 $ out of the last two terms.
$$ 9x^{2}+24x-3x-8 = 3x\left(3x+8\right) -1\left(3x+8\right) = \left(3x-1\right) \left(3x+8\right) $$