Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 50 }$ by the constant term $\color{blue}{c = 9} $.
$$ a \cdot c = 450 $$Step 3: Find out two numbers that multiply to $ a \cdot c = 450 $ and add to $ b = 45 $.
Step 4: All pairs of numbers with a product of $ 450 $ are:
PRODUCT = 450 | |
1 450 | -1 -450 |
2 225 | -2 -225 |
3 150 | -3 -150 |
5 90 | -5 -90 |
6 75 | -6 -75 |
9 50 | -9 -50 |
10 45 | -10 -45 |
15 30 | -15 -30 |
18 25 | -18 -25 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = 45 }$
PRODUCT = 450 and SUM = 45 | |
1 450 | -1 -450 |
2 225 | -2 -225 |
3 150 | -3 -150 |
5 90 | -5 -90 |
6 75 | -6 -75 |
9 50 | -9 -50 |
10 45 | -10 -45 |
15 30 | -15 -30 |
18 25 | -18 -25 |
Step 6: Replace middle term $ 45 x $ with $ 30x+15x $:
$$ 50x^{2}+45x+9 = 50x^{2}+30x+15x+9 $$Step 7: Apply factoring by grouping. Factor $ 10x $ out of the first two terms and $ 3 $ out of the last two terms.
$$ 50x^{2}+30x+15x+9 = 10x\left(5x+3\right) + 3\left(5x+3\right) = \left(10x+3\right) \left(5x+3\right) $$