It seems that $ 504x^{2}+228x+29 $ cannot be factored out.
Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 504 }$ by the constant term $\color{blue}{c = 29} $.
$$ a \cdot c = 14616 $$Step 3: Find out two numbers that multiply to $ a \cdot c = 14616 $ and add to $ b = 228 $.
Step 4: All pairs of numbers with a product of $ 14616 $ are:
PRODUCT = 14616 | |
1 14616 | -1 -14616 |
2 7308 | -2 -7308 |
3 4872 | -3 -4872 |
4 3654 | -4 -3654 |
6 2436 | -6 -2436 |
7 2088 | -7 -2088 |
8 1827 | -8 -1827 |
9 1624 | -9 -1624 |
12 1218 | -12 -1218 |
14 1044 | -14 -1044 |
18 812 | -18 -812 |
21 696 | -21 -696 |
24 609 | -24 -609 |
28 522 | -28 -522 |
29 504 | -29 -504 |
36 406 | -36 -406 |
42 348 | -42 -348 |
56 261 | -56 -261 |
58 252 | -58 -252 |
63 232 | -63 -232 |
72 203 | -72 -203 |
84 174 | -84 -174 |
87 168 | -87 -168 |
116 126 | -116 -126 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = 228 }$
Step 6: Because none of these pairs will give us a sum of $ \color{blue}{ 228 }$, we conclude the polynomial cannot be factored.