Step 1 :
Factor out common factor $ \color{blue}{ 4 } $:
$$ 4x^2y^2-4 = 4 ( x^2y^2-1 ) $$Step 2 :
Rewrite $ x^2y^2-1 $ as:
$$ \color{blue}{ x^2y^2-1 = (xy)^2 - (1)^2 } $$Now we can apply the difference of squares formula.
$$ I^2 - II^2 = (I - II)(I + II) $$After putting $ I = xy $ and $ II = 1 $ , we have:
$$ x^2y^2-1 = (xy)^2 - (1)^2 = ( xy-1 ) ( xy+1 ) $$