Step 1 :
After factoring out $ 2 $ we have:
$$ 4x^{2}+6x-4048 = 2 ( 2x^{2}+3x-2024 ) $$Step 2 :
Step 2: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 3: Multiply the leading coefficient $\color{blue}{ a = 2 }$ by the constant term $\color{blue}{c = -2024} $.
$$ a \cdot c = -4048 $$Step 4: Find out two numbers that multiply to $ a \cdot c = -4048 $ and add to $ b = 3 $.
Step 5: All pairs of numbers with a product of $ -4048 $ are:
PRODUCT = -4048 | |
-1 4048 | 1 -4048 |
-2 2024 | 2 -2024 |
-4 1012 | 4 -1012 |
-8 506 | 8 -506 |
-11 368 | 11 -368 |
-16 253 | 16 -253 |
-22 184 | 22 -184 |
-23 176 | 23 -176 |
-44 92 | 44 -92 |
-46 88 | 46 -88 |
Step 6: Find out which factor pair sums up to $\color{blue}{ b = 3 }$
Step 7: Because none of these pairs will give us a sum of $ \color{blue}{ 3 }$, we conclude the polynomial cannot be factored.