Step 1 :
After factoring out $ 2 $ we have:
$$ 4x^{2}+54x+140 = 2 ( 2x^{2}+27x+70 ) $$Step 2 :
Step 2: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 3: Multiply the leading coefficient $\color{blue}{ a = 2 }$ by the constant term $\color{blue}{c = 70} $.
$$ a \cdot c = 140 $$Step 4: Find out two numbers that multiply to $ a \cdot c = 140 $ and add to $ b = 27 $.
Step 5: All pairs of numbers with a product of $ 140 $ are:
PRODUCT = 140 | |
1 140 | -1 -140 |
2 70 | -2 -70 |
4 35 | -4 -35 |
5 28 | -5 -28 |
7 20 | -7 -20 |
10 14 | -10 -14 |
Step 6: Find out which factor pair sums up to $\color{blue}{ b = 27 }$
PRODUCT = 140 and SUM = 27 | |
1 140 | -1 -140 |
2 70 | -2 -70 |
4 35 | -4 -35 |
5 28 | -5 -28 |
7 20 | -7 -20 |
10 14 | -10 -14 |
Step 7: Replace middle term $ 27 x $ with $ 20x+7x $:
$$ 2x^{2}+27x+70 = 2x^{2}+20x+7x+70 $$Step 8: Apply factoring by grouping. Factor $ 2x $ out of the first two terms and $ 7 $ out of the last two terms.
$$ 2x^{2}+20x+7x+70 = 2x\left(x+10\right) + 7\left(x+10\right) = \left(2x+7\right) \left(x+10\right) $$