Step 1 :
After factoring out $ 4 $ we have:
$$ 4x^{2}-20x-24 = 4 ( x^{2}-5x-6 ) $$Step 2 :
Step 2: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = -5 } ~ \text{ and } ~ \color{red}{ c = -6 }$$Now we must discover two numbers that sum up to $ \color{blue}{ -5 } $ and multiply to $ \color{red}{ -6 } $.
Step 3: Find out pairs of numbers with a product of $\color{red}{ c = -6 }$.
PRODUCT = -6 | |
-1 6 | 1 -6 |
-2 3 | 2 -3 |
Step 4: Find out which pair sums up to $\color{blue}{ b = -5 }$
PRODUCT = -6 and SUM = -5 | |
-1 6 | 1 -6 |
-2 3 | 2 -3 |
Step 5: Put 1 and -6 into placeholders to get factored form.
$$ \begin{aligned} x^{2}-5x-6 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ x^{2}-5x-6 & = (x + 1)(x -6) \end{aligned} $$