Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 4 }$ by the constant term $\color{blue}{c = 9} $.
$$ a \cdot c = 36 $$Step 3: Find out two numbers that multiply to $ a \cdot c = 36 $ and add to $ b = -13 $.
Step 4: All pairs of numbers with a product of $ 36 $ are:
PRODUCT = 36 | |
1 36 | -1 -36 |
2 18 | -2 -18 |
3 12 | -3 -12 |
4 9 | -4 -9 |
6 6 | -6 -6 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = -13 }$
PRODUCT = 36 and SUM = -13 | |
1 36 | -1 -36 |
2 18 | -2 -18 |
3 12 | -3 -12 |
4 9 | -4 -9 |
6 6 | -6 -6 |
Step 6: Replace middle term $ -13 x $ with $ -4x-9x $:
$$ 4x^{2}-13x+9 = 4x^{2}-4x-9x+9 $$Step 7: Apply factoring by grouping. Factor $ 4x $ out of the first two terms and $ -9 $ out of the last two terms.
$$ 4x^{2}-4x-9x+9 = 4x\left(x-1\right) -9\left(x-1\right) = \left(4x-9\right) \left(x-1\right) $$