Step 1 :
After factoring out $ 4k $ we have:
$$ 4k^{3}-100k = 4k ( k^{2}-25 ) $$Step 2 :
Rewrite $ k^{2}-25 $ as:
$$ k^{2}-25 = (k)^2 - (5)^2 $$Now we can apply the difference of squares formula.
$$ I^2 - II^2 = (I - II)(I + II) $$After putting $ I = k $ and $ II = 5 $ , we have:
$$ k^{2}-25 = (k)^2 - (5)^2 = ( k-5 ) ( k+5 ) $$