Step 1 :
After factoring out $ 4a^{2} $ we have:
$$ 4a^{4}+32a^{3}-36a^{2} = 4a^{2} ( a^{2}+8a-9 ) $$Step 2 :
Step 2: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = 8 } ~ \text{ and } ~ \color{red}{ c = -9 }$$Now we must discover two numbers that sum up to $ \color{blue}{ 8 } $ and multiply to $ \color{red}{ -9 } $.
Step 3: Find out pairs of numbers with a product of $\color{red}{ c = -9 }$.
PRODUCT = -9 | |
-1 9 | 1 -9 |
-3 3 | 3 -3 |
Step 4: Find out which pair sums up to $\color{blue}{ b = 8 }$
PRODUCT = -9 and SUM = 8 | |
-1 9 | 1 -9 |
-3 3 | 3 -3 |
Step 5: Put -1 and 9 into placeholders to get factored form.
$$ \begin{aligned} a^{2}+8a-9 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ a^{2}+8a-9 & = (x -1)(x + 9) \end{aligned} $$