Step 1 :
To factor $ 4a^3-a^2b-36a+9b $ we can use factoring by grouping.
Group $ \color{blue}{ 4a^3 }$ with $ \color{blue}{ -a^2b }$ and $ \color{red}{ -36a }$ with $ \color{red}{ 9b }$ then factor each group.
$$ \begin{aligned} 4a^3-a^2b-36a+9b &= ( \color{blue}{ 4a^3-a^2b } ) + ( \color{red}{ -36a+9b }) = \\ &= \color{blue}{ a^2( 4a-b )} \color{red}{ -9( 4a-b ) } = \\ &= (a^2-9)(4a-b) \end{aligned} $$Step 2 :
Rewrite $ a^2-9 $ as:
$$ \color{blue}{ a^2-9 = (a)^2 - (3)^2 } $$Now we can apply the difference of squares formula.
$$ I^2 - II^2 = (I - II)(I + II) $$After putting $ I = a $ and $ II = 3 $ , we have:
$$ a^2-9 = (a)^2 - (3)^2 = ( a-3 ) ( a+3 ) $$