Step 1 :
After factoring out $ 4d^{2} $ we have:
$$ 40d^{4}+92d^{3}+48d^{2} = 4d^{2} ( 10d^{2}+23d+12 ) $$Step 2 :
Step 2: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 3: Multiply the leading coefficient $\color{blue}{ a = 10 }$ by the constant term $\color{blue}{c = 12} $.
$$ a \cdot c = 120 $$Step 4: Find out two numbers that multiply to $ a \cdot c = 120 $ and add to $ b = 23 $.
Step 5: All pairs of numbers with a product of $ 120 $ are:
PRODUCT = 120 | |
1 120 | -1 -120 |
2 60 | -2 -60 |
3 40 | -3 -40 |
4 30 | -4 -30 |
5 24 | -5 -24 |
6 20 | -6 -20 |
8 15 | -8 -15 |
10 12 | -10 -12 |
Step 6: Find out which factor pair sums up to $\color{blue}{ b = 23 }$
PRODUCT = 120 and SUM = 23 | |
1 120 | -1 -120 |
2 60 | -2 -60 |
3 40 | -3 -40 |
4 30 | -4 -30 |
5 24 | -5 -24 |
6 20 | -6 -20 |
8 15 | -8 -15 |
10 12 | -10 -12 |
Step 7: Replace middle term $ 23 x $ with $ 15x+8x $:
$$ 10x^{2}+23x+12 = 10x^{2}+15x+8x+12 $$Step 8: Apply factoring by grouping. Factor $ 5x $ out of the first two terms and $ 4 $ out of the last two terms.
$$ 10x^{2}+15x+8x+12 = 5x\left(2x+3\right) + 4\left(2x+3\right) = \left(5x+4\right) \left(2x+3\right) $$