Step 1 :
After factoring out $ 3y^{3} $ we have:
$$ 3y^{5}+36y^{4}-84y^{3} = 3y^{3} ( y^{2}+12y-28 ) $$Step 2 :
Step 2: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = 12 } ~ \text{ and } ~ \color{red}{ c = -28 }$$Now we must discover two numbers that sum up to $ \color{blue}{ 12 } $ and multiply to $ \color{red}{ -28 } $.
Step 3: Find out pairs of numbers with a product of $\color{red}{ c = -28 }$.
PRODUCT = -28 | |
-1 28 | 1 -28 |
-2 14 | 2 -14 |
-4 7 | 4 -7 |
Step 4: Find out which pair sums up to $\color{blue}{ b = 12 }$
PRODUCT = -28 and SUM = 12 | |
-1 28 | 1 -28 |
-2 14 | 2 -14 |
-4 7 | 4 -7 |
Step 5: Put -2 and 14 into placeholders to get factored form.
$$ \begin{aligned} y^{2}+12y-28 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ y^{2}+12y-28 & = (x -2)(x + 14) \end{aligned} $$