To factor $ 3y^{3}-5y^{2}+15y-25 $ we can use factoring by grouping:
Group $ \color{blue}{ 3x^{3} }$ with $ \color{blue}{ -5x^{2} }$ and $ \color{red}{ 15x }$ with $ \color{red}{ -25 }$ then factor each group.
$$ \begin{aligned} 3y^{3}-5y^{2}+15y-25 = ( \color{blue}{ 3x^{3}-5x^{2} } ) + ( \color{red}{ 15x-25 }) &= \\ &= \color{blue}{ x^{2}( 3x-5 )} + \color{red}{ 5( 3x-5 ) } = \\ &= (x^{2}+5)(3x-5) \end{aligned} $$