Step 1 :
After factoring out $ x^{2} $ we have:
$$ 3x^{4}-15x^{3}+2x^{2} = x^{2} ( 3x^{2}-15x+2 ) $$Step 2 :
Step 2: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 3: Multiply the leading coefficient $\color{blue}{ a = 3 }$ by the constant term $\color{blue}{c = 2} $.
$$ a \cdot c = 6 $$Step 4: Find out two numbers that multiply to $ a \cdot c = 6 $ and add to $ b = -15 $.
Step 5: All pairs of numbers with a product of $ 6 $ are:
PRODUCT = 6 | |
1 6 | -1 -6 |
2 3 | -2 -3 |
Step 6: Find out which factor pair sums up to $\color{blue}{ b = -15 }$
Step 7: Because none of these pairs will give us a sum of $ \color{blue}{ -15 }$, we conclude the polynomial cannot be factored.