Step 1 :
After factoring out $ 3x $ we have:
$$ 3x^{3}+33x^{2}+57x = 3x ( x^{2}+11x+19 ) $$Step 2 :
Step 2: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = 11 } ~ \text{ and } ~ \color{red}{ c = 19 }$$Now we must discover two numbers that sum up to $ \color{blue}{ 11 } $ and multiply to $ \color{red}{ 19 } $.
Step 3: Find out pairs of numbers with a product of $\color{red}{ c = 19 }$.
PRODUCT = 19 | |
1 19 | -1 -19 |
Step 4: Because none of these pairs will give us a sum of $ \color{blue}{ 11 }$, we conclude the polynomial cannot be factored.