Step 1 :
After factoring out $ 3x $ we have:
$$ 3x^{3}-9x^{2}-54x = 3x ( x^{2}-3x-18 ) $$Step 2 :
Step 2: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = -3 } ~ \text{ and } ~ \color{red}{ c = -18 }$$Now we must discover two numbers that sum up to $ \color{blue}{ -3 } $ and multiply to $ \color{red}{ -18 } $.
Step 3: Find out pairs of numbers with a product of $\color{red}{ c = -18 }$.
PRODUCT = -18 | |
-1 18 | 1 -18 |
-2 9 | 2 -9 |
-3 6 | 3 -6 |
Step 4: Find out which pair sums up to $\color{blue}{ b = -3 }$
PRODUCT = -18 and SUM = -3 | |
-1 18 | 1 -18 |
-2 9 | 2 -9 |
-3 6 | 3 -6 |
Step 5: Put 3 and -6 into placeholders to get factored form.
$$ \begin{aligned} x^{2}-3x-18 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ x^{2}-3x-18 & = (x + 3)(x -6) \end{aligned} $$