Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 3 }$ by the constant term $\color{blue}{c = 24} $.
$$ a \cdot c = 72 $$Step 3: Find out two numbers that multiply to $ a \cdot c = 72 $ and add to $ b = 22 $.
Step 4: All pairs of numbers with a product of $ 72 $ are:
PRODUCT = 72 | |
1 72 | -1 -72 |
2 36 | -2 -36 |
3 24 | -3 -24 |
4 18 | -4 -18 |
6 12 | -6 -12 |
8 9 | -8 -9 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = 22 }$
PRODUCT = 72 and SUM = 22 | |
1 72 | -1 -72 |
2 36 | -2 -36 |
3 24 | -3 -24 |
4 18 | -4 -18 |
6 12 | -6 -12 |
8 9 | -8 -9 |
Step 6: Replace middle term $ 22 x $ with $ 18x+4x $:
$$ 3x^{2}+22x+24 = 3x^{2}+18x+4x+24 $$Step 7: Apply factoring by grouping. Factor $ 3x $ out of the first two terms and $ 4 $ out of the last two terms.
$$ 3x^{2}+18x+4x+24 = 3x\left(x+6\right) + 4\left(x+6\right) = \left(3x+4\right) \left(x+6\right) $$