Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 3 }$ by the constant term $\color{blue}{c = -56} $.
$$ a \cdot c = -168 $$Step 3: Find out two numbers that multiply to $ a \cdot c = -168 $ and add to $ b = 17 $.
Step 4: All pairs of numbers with a product of $ -168 $ are:
PRODUCT = -168 | |
-1 168 | 1 -168 |
-2 84 | 2 -84 |
-3 56 | 3 -56 |
-4 42 | 4 -42 |
-6 28 | 6 -28 |
-7 24 | 7 -24 |
-8 21 | 8 -21 |
-12 14 | 12 -14 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = 17 }$
PRODUCT = -168 and SUM = 17 | |
-1 168 | 1 -168 |
-2 84 | 2 -84 |
-3 56 | 3 -56 |
-4 42 | 4 -42 |
-6 28 | 6 -28 |
-7 24 | 7 -24 |
-8 21 | 8 -21 |
-12 14 | 12 -14 |
Step 6: Replace middle term $ 17 x $ with $ 24x-7x $:
$$ 3x^{2}+17x-56 = 3x^{2}+24x-7x-56 $$Step 7: Apply factoring by grouping. Factor $ 3x $ out of the first two terms and $ -7 $ out of the last two terms.
$$ 3x^{2}+24x-7x-56 = 3x\left(x+8\right) -7\left(x+8\right) = \left(3x-7\right) \left(x+8\right) $$