Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 3 }$ by the constant term $\color{blue}{c = 28} $.
$$ a \cdot c = 84 $$Step 3: Find out two numbers that multiply to $ a \cdot c = 84 $ and add to $ b = -25 $.
Step 4: All pairs of numbers with a product of $ 84 $ are:
PRODUCT = 84 | |
1 84 | -1 -84 |
2 42 | -2 -42 |
3 28 | -3 -28 |
4 21 | -4 -21 |
6 14 | -6 -14 |
7 12 | -7 -12 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = -25 }$
PRODUCT = 84 and SUM = -25 | |
1 84 | -1 -84 |
2 42 | -2 -42 |
3 28 | -3 -28 |
4 21 | -4 -21 |
6 14 | -6 -14 |
7 12 | -7 -12 |
Step 6: Replace middle term $ -25 x $ with $ -4x-21x $:
$$ 3x^{2}-25x+28 = 3x^{2}-4x-21x+28 $$Step 7: Apply factoring by grouping. Factor $ x $ out of the first two terms and $ -7 $ out of the last two terms.
$$ 3x^{2}-4x-21x+28 = x\left(3x-4\right) -7\left(3x-4\right) = \left(x-7\right) \left(3x-4\right) $$