Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 3 }$ by the constant term $\color{blue}{c = 25} $.
$$ a \cdot c = 75 $$Step 3: Find out two numbers that multiply to $ a \cdot c = 75 $ and add to $ b = -20 $.
Step 4: All pairs of numbers with a product of $ 75 $ are:
PRODUCT = 75 | |
1 75 | -1 -75 |
3 25 | -3 -25 |
5 15 | -5 -15 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = -20 }$
PRODUCT = 75 and SUM = -20 | |
1 75 | -1 -75 |
3 25 | -3 -25 |
5 15 | -5 -15 |
Step 6: Replace middle term $ -20 x $ with $ -5x-15x $:
$$ 3x^{2}-20x+25 = 3x^{2}-5x-15x+25 $$Step 7: Apply factoring by grouping. Factor $ x $ out of the first two terms and $ -5 $ out of the last two terms.
$$ 3x^{2}-5x-15x+25 = x\left(3x-5\right) -5\left(3x-5\right) = \left(x-5\right) \left(3x-5\right) $$