Step 1 :
After factoring out $ 3 $ we have:
$$ 3x^{2}-12x-135 = 3 ( x^{2}-4x-45 ) $$Step 2 :
Step 2: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = -4 } ~ \text{ and } ~ \color{red}{ c = -45 }$$Now we must discover two numbers that sum up to $ \color{blue}{ -4 } $ and multiply to $ \color{red}{ -45 } $.
Step 3: Find out pairs of numbers with a product of $\color{red}{ c = -45 }$.
PRODUCT = -45 | |
-1 45 | 1 -45 |
-3 15 | 3 -15 |
-5 9 | 5 -9 |
Step 4: Find out which pair sums up to $\color{blue}{ b = -4 }$
PRODUCT = -45 and SUM = -4 | |
-1 45 | 1 -45 |
-3 15 | 3 -15 |
-5 9 | 5 -9 |
Step 5: Put 5 and -9 into placeholders to get factored form.
$$ \begin{aligned} x^{2}-4x-45 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ x^{2}-4x-45 & = (x + 5)(x -9) \end{aligned} $$