Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 3 }$ by the constant term $\color{blue}{c = 6} $.
$$ a \cdot c = 18 $$Step 3: Find out two numbers that multiply to $ a \cdot c = 18 $ and add to $ b = -11 $.
Step 4: All pairs of numbers with a product of $ 18 $ are:
PRODUCT = 18 | |
1 18 | -1 -18 |
2 9 | -2 -9 |
3 6 | -3 -6 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = -11 }$
PRODUCT = 18 and SUM = -11 | |
1 18 | -1 -18 |
2 9 | -2 -9 |
3 6 | -3 -6 |
Step 6: Replace middle term $ -11 x $ with $ -2x-9x $:
$$ 3x^{2}-11x+6 = 3x^{2}-2x-9x+6 $$Step 7: Apply factoring by grouping. Factor $ x $ out of the first two terms and $ -3 $ out of the last two terms.
$$ 3x^{2}-2x-9x+6 = x\left(3x-2\right) -3\left(3x-2\right) = \left(x-3\right) \left(3x-2\right) $$