Step 1 :
To factor $ 3k^{3}-4k^{2}-12k+16 $ we can use factoring by grouping:
Group $ \color{blue}{ 3x^{3} }$ with $ \color{blue}{ -4x^{2} }$ and $ \color{red}{ -12x }$ with $ \color{red}{ 16 }$ then factor each group.
$$ \begin{aligned} 3k^{3}-4k^{2}-12k+16 = ( \color{blue}{ 3x^{3}-4x^{2} } ) + ( \color{red}{ -12x+16 }) &= \\ &= \color{blue}{ x^{2}( 3x-4 )} + \color{red}{ -4( 3x-4 ) } = \\ &= (x^{2}-4)(3x-4) \end{aligned} $$Step 2 :
Rewrite $ k^{2}-4 $ as:
$$ k^{2}-4 = (k)^2 - (2)^2 $$Now we can apply the difference of squares formula.
$$ I^2 - II^2 = (I - II)(I + II) $$After putting $ I = k $ and $ II = 2 $ , we have:
$$ k^{2}-4 = (k)^2 - (2)^2 = ( k-2 ) ( k+2 ) $$