Step 1 :
To factor $ -x^{3}+39304 $ we can use difference of cubes formula:
$$ I^3 - II^3 = (I - II)(I^2 + I \cdot II + II^2) $$After putting $ I = 34 $ and $ II = x $ , we have:
$$ -x^{3}+39304 = ( -x+34 ) ( x^{2}+34x+1156 ) $$Step 2 :
Step 2: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = 34 } ~ \text{ and } ~ \color{red}{ c = 1156 }$$Now we must discover two numbers that sum up to $ \color{blue}{ 34 } $ and multiply to $ \color{red}{ 1156 } $.
Step 3: Find out pairs of numbers with a product of $\color{red}{ c = 1156 }$.
PRODUCT = 1156 | |
1 1156 | -1 -1156 |
2 578 | -2 -578 |
4 289 | -4 -289 |
17 68 | -17 -68 |
34 34 | -34 -34 |
Step 4: Because none of these pairs will give us a sum of $ \color{blue}{ 34 }$, we conclude the polynomial cannot be factored.